Saturday, December 6, 2008

Oxygen O2 Analyzer - H2S

An oxygen analyzer sensor, or lambda sensor, is an electronic device that measures the proportion of oxygen (O2) in the gas or liquid being analyzed. It was developed by Robert Bosch GmbH during the late 1960s under supervision by Dr. Günter Bauman. The original sensing element is made with a thimble-shaped zirconia ceramic coated on both the exhaust and reference sides with a thin layer of platinum and comes in both heated and unheated forms. The planar-style sensor entered the market in 1998 (also pioneered by Robert Bosch GmbH) and significantly reduced the mass of the ceramic sensing element as well as incorporating the heater within the ceramic structure. This resulted in a sensor that both started operating sooner and responded faster. The most common application is to measure the exhaust gas concentration of oxygen for internal combustion engines in automobiles and other vehicles. Divers also use a similar device to measure the partial pressure of oxygen in their breathing gas.

Scientists use oxygen sensors to measure respiration or production of oxygen and use a different approach. Oxygen sensors are used in oxygen analyzers which find a lot of use in medical applications such as anesthesia monitors, respirators and oxygen concentrators.

There are many different ways of measuring oxygen and these include technologies such as zirconia, electrochemical (also known as Galvanic), infrared, ultrasonic and very recently laser. Each method has its own advantages and disadvantages.

Friday, December 5, 2008

Oxygen sensor

An oxygen sensor, or lambda sensor, is an electronic device that measures the proportion of oxygen (O2) in the gas or liquid being analyzed. It was developed by Robert Bosch GmbH during the late 1960s under supervision by Dr. Günter Bauman. The original sensing element is made with a thimble-shaped zirconia ceramic coated on both the exhaust and reference sides with a thin layer of platinum and comes in both heated and unheated forms. The planar-style sensor entered the market in 1998 (also pioneered by Robert Bosch GmbH) and significantly reduced the mass of the ceramic sensing element as well as incorporating the heater within the ceramic structure. This resulted in a sensor that both started operating sooner and responded faster. The most common application is to measure the exhaust gas concentration of oxygen for internal combustion engines in automobiles and other vehicles. Divers also use a similar device to measure the partial pressure of oxygen in their breathing gas.

Scientists use oxygen sensors to measure respiration or production of oxygen and use a different approach. Oxygen sensors are used in oxygen analyzers which find a lot of use in medical applications such as anesthesia monitors, respirators and oxygen concentrators.

There are many different ways of measuring oxygen and these include technologies such as zirconia, electrochemical (also known as Galvanic), infrared, ultrasonic and very recently laser. Each method has its own advantages and disadvantages.

Automotive applications

Automotive oxygen sensors, colloquially known as O2 sensors, make modern electronic fuel injection and emission control possible. They determine if the air fuel ratio exiting a gas-combustion engine is rich (with unburnt fuel vapor) or lean (with excess oxygen). Closed-loop feedback-controlled fuel injection varies the fuel injector output according to real-time sensor data rather than operating with a predetermined (open-loop) fuel map. In addition to improving overall engine operation, they reduce the amounts of both unburnt fuel and oxides of nitrogen from entering the atmosphere. Unburnt fuel is pollution in the form of air-borne hydrocarbons, while oxides of nitrogen (NOx gases) are a result of excess air in the fuel mixture and cause smog and acid rain. Volvo was the first automobile manufacturer to employ this technology in the late 70s, along with the 3-way catalyst.

Information on oxygen concentration is sent to the engine management computer or ECU, which adjusts the mixture to give the engine the best possible fuel economy and lowest possible exhaust emissions. Failure of these sensors, either through normal aging, the use of leaded fuels, or fuel contamination with silicones or silicates, for example, can lead to damage of an automobile's catalytic converter and expensive repairs.

Tampering with or modifying the signal that the oxygen sensor sends to the engine computer can be detrimental to emissions control and can even damage the engine. When the engine is under low-load conditions (such as when accelerating very gently, or maintaining a constant speed), it is operating in 'closed-loop mode'. This refers to a feedback loop between the fuel injectors and the oxygen sensor, to maintain stoichiometric ratio. If modifications cause the mixture to run lean, there will be a slight increase in fuel economy, but a possible increase in nitrogen oxide emissions (dependent on excess air and high combustion temperatures although leaner mixtures have lower peak temperatures due to a slower burn), possible misfiring (at ultra-lean mixtures), and slightly higher exhaust gas temperatures. If modifications cause the mixture to run rich, then there will be a slight increase in power, again at the risk of overheating and igniting the catalytic converter, while decreasing fuel economy and increasing hydrocarbon emissions.

When an internal combustion engine is under high load (such as when using wide open throttle), the output of the oxygen sensor is ignored, and the engine automatically enriches the mixture to protect the engine. Any changes in the sensor output will be ignored in this state, as are changes from the air flow meter, which might otherwise lower engine performance due to the mixture being too rich or too lean, and increase the risk of engine damage due to detonation if the mixture is too lean.

Function of a lambda probe

Lambda probes are used to reduce vehicle emissions by ensuring that engines burn their fuel efficiently and cleanly. Robert Bosch GmbH introduced the first automotive lambda probe in 1976, and it was first used by Volvo and Saab in that year. The sensors were introduced in the US from about 1980, and were required on all models of cars in many countries in Europe in 1993.

By measuring the proportion of oxygen in the remaining exhaust gas, and by knowing the volume and temperature of the air entering the cylinders amongst other things, an ECU can use look-up tables to determine the amount of fuel required to burn at the stoichiometric ratio (14.7:1 air:fuel by mass for gasoline) to ensure complete combustion.

The probe

The sensor element is a ceramic cylinder plated inside and out with porous platinum electrodes; the whole assembly is protected by a metal gauze. It operates by measuring the difference in oxygen between the exhaust gas and the external air, and generates a voltage or changes its resistance depending on the difference between the two. The sensors only work effectively when heated to approximately 800°C (1,472F), so most newer lambda probes have heating elements encased in the ceramic to bring the ceramic tip up to temperature quickly when the exhaust is cold. The probe typically has four wires attached to it: two for the lambda output, and two for the heater power, although some automakers use a common ground for the sensor element and heaters, resulting in three wires. Earlier non-electrically-heated sensors had one or two wires.

The probe

The sensor element is a ceramic cylinder plated inside and out with porous platinum electrodes; the whole assembly is protected by a metal gauze. It operates by measuring the difference in oxygen between the exhaust gas and the external air, and generates a voltage or changes its resistance depending on the difference between the two. The sensors only work effectively when heated to approximately 800°C (1,472F), so most newer lambda probes have heating elements encased in the ceramic to bring the ceramic tip up to temperature quickly when the exhaust is cold. The probe typically has four wires attached to it: two for the lambda output, and two for the heater power, although some automakers use a common ground for the sensor element and heaters, resulting in three wires. Earlier non-electrically-heated sensors had one or two wires.

Operation of the probe

The zirconium dioxide, or zirconia, lambda sensor is based on a solid-state electrochemical fuel cell called the Nernst cell. Its two electrodes provide an output voltage corresponding to the quantity of oxygen in the exhaust relative to that in the atmosphere. An output voltage of 0.2 V (200 mV) DC represents a lean mixture. That is one where the amount of oxygen entering the cylinder is sufficient to fully oxidize the carbon monoxide (CO), produced in burning the air and fuel, into carbon dioxide (CO2). A reading of 0.8 V (800 mV) DC represents a rich mixture, one which is high in unburned fuel and low in remaining oxygen. The ideal point is 0.45 V (450 mV) DC; this is where the quantities of air and fuel are in the optimum ratio, called the stoichiometric point, and the exhaust output mainly consists of fully oxidized CO2.

The voltage produced by the sensor is so nonlinear with respect to oxygen concentration that it is impractical for the engine control unit (ECU) to measure intermediate values - it merely registers "lean" or "rich", and periodically adjusts the fuel/air mixture to keep the output of the sensor alternating between these two states. The time period chosen by the ECU to monitor the sensor and adjust the fuel/air mixture creates an inevitable delay, which makes this system less responsive than one using a linear sensor (see below). The shorter the time period, the higher the so-called "cross count"and the more responsive the system.

The zirconia sensor is of the 'narrow band' type, referring to the narrow range of fuel/air ratios to which it responds.